Energy & Utility- Turbine Blade cooling

Energy & Utility- Turbine Blade cooling

B&B-AGEMA uses Siemens Digital Industries Software solutions for design space exploration. Simcenter STAR-CCM+ helps energy consultancy firm improve gas turbine blade cooling. Finding ways to increase temperatures at the combustor exit and high-pressure turbine stage inlet is the key to boosting gas turbine efficiency. But higher operating temperatures jeopardize the integrity of the turbine’s high-pressure components, especially the vanes and blades, since modern turbine stage inlet temperatures exceed the melting points of turbine blade materials. To combat this, turbine blade designs have incorporated a technique known as film cooling. Engineers from B&B-AGEMA and KHI worked with Siemens to conduct an automated search of the design landscape to identify Nekomimi designs while meeting conflicting objectives: low coolant mass flow rate and high adiabatic film cooling effectiveness on the test section. The parameters defining the shape of the Nekomimi holes were varied over 349 fluid dynamic simulations and generated a Pareto frontier of designs, representing the best trade-offs between the two objectives. Additionally, the design landscape of a laidback fan-shaped film cooling hole was searched in over 299 simulations as a reference in order to show the advantages of the Nekomimi technology.

Write a comment
Social media & sharing icons powered by UltimatelySocial
LinkedIn

Submit Your Details to Download Case Studies